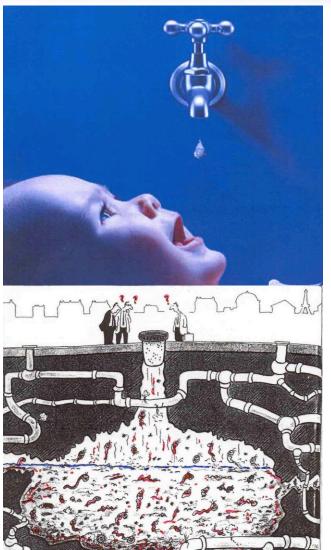


CONTAMINAÇÃO DAS ÁGUAS E REMEDIAÇÃO AMBIENTAL DE LIXÕES

Prof. Luiz Rogério Bastos Leal Irogerio@ufba.br

CENÁRIO ATUAL DOS LIXÕES NO BRASIL

- ✓ Para onde tá sendo encaminhado o lixo nessa época de pandemia?
- √ Há riscos do COVID-19 está no lixo? E se está nos lixões pode contaminara as águas, o solo, o ar e as pessoas?
- ✓ Apesar de a obrigatoriedade ter sido instituída há oito anos, pela Política Nacional de Resíduos Sólidos (PNRS) – Lei 12.305/2010;
- ✓ Ainda existem quase 3.000 lixões a céu aberto no Brasil, espalhados em mais de 1.500 cidades - Confederação Nacional de Municípios (CNM);
- ✓ Segundo o IBGE mais da metade das cidades brasileiras não tem o Plano de Manejo Integrado de Resíduos Sólidos;
- √ 90% das cidades tem coleta de resíduos mas só 59% tem destinação final adequada em aterros sanitários;
- ✓ Os lixões causam contaminação da água, do solo e poluem o ar;
- ✓ Estimativas apontam que 95 milhões de brasileiros são diretamente afetados pelos lixões, sejam aqueles que vivem diretamente dos resíduos dispostos nos lixões, aqueles que vivem muito próximos ou mesmo aqueles que consomem ou a água ou alimentos produzidos nessas áreas contaminadas, trazendo uma série problemas para a saúde.



SUMÁRIO

- O que é LIXÃO ou VAZADOURO?
- A diferença LIXÃO x ATERRO CONTROLADO x ATERRO SANITÁRIO
- Situação atual da destinação dos resíduos na Bahia e no Brasil;
- Contaminantes dos lixões nos meios geológicos
- Métodos de investigação em áreas contaminadas por lixões
- Remediação de áreas contaminadas
- Estudos de caso

O que é **LIXÃO** ou **VAZADOURO**?

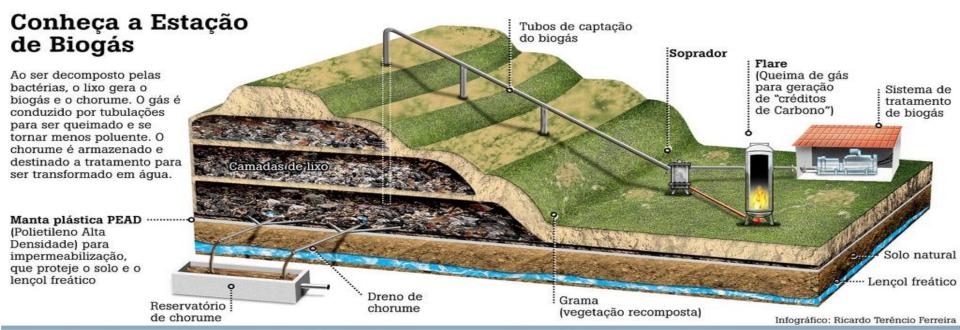
Lixão é uma forma inadequada de disposição final de resíduos sólidos, que se caracteriza pela simples descarga do lixo sobre o solo, sem medidas de proteção ao meio ambiente ou à saúde pública (IPT 1995). VAZADOURO é um termo técnico para se referir a um LIXÃO.

Lixão resiste no Brasil, ignorando legislação

Apesar da prática ser proibida desde 1981, 42% do lixo é depositado a céu aberto, prejudicando o meio ambiente

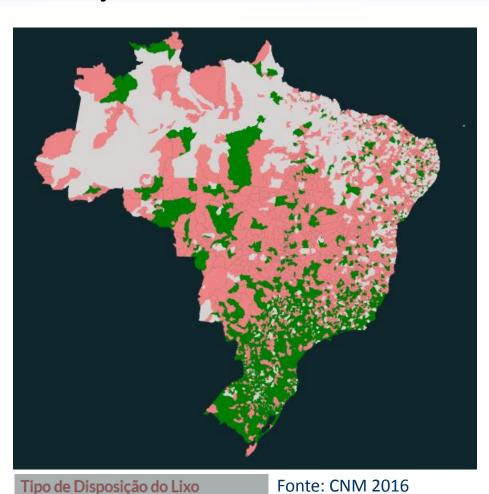
O que é **LIXÃO** ou **ATERRO CONTROLADO**?

- ✓ LIXÃO OU VAZADOURO NÃO TEM LICENÇA, AUTORIZAÇÃO E É SITUAÇÃO TOTALMENTE IRREGULAR, SUJEITA ÀS SANÇÕES DOS ÓRGÃOS AMBIENTAIS E LEGISLAÇÃO AMBIENTAL.
- ✓ SÃO DESPEJADOS TODO TIPO DE RESÍDUO, SEM CONTROLE OU FISCALIZAÇÃO; DIVISAS SEM CERCAS E SEM CONTROLE DE ENTRADA, COM CATADORES, ANIMAIS E AVES, SOBRE OS RESÍDUOS DESCOBERTOS. GERALMENTE MUITO MAL SITUADO (POR EXEMPLO, "BEIRA" DE RIO).
- ✓ PORTANTO, NÃO SE PODE CONFUNDIR VAZADOURO DE RESÍDUOS, COM CUSTOS DIRETOS PRÓXIMOS A ZERO, PORÉM COM GRANDE CUSTO AMBIENTAL, COM ATERRO SANITÁRIO, QUE É OBRA DE ENGENHARIA, PROHJETADA PARA PROTEGER O MEIO AMBIENTE E A SAÚDE;
- ✓ ATERRO CONTROLADO É UM VAZADOURO, NO MÍNIMO, COM COBERTURA DE SOLO, PORÉM COM TODOS OS OUTROS IMPACTOS AO MEIO AMBIENTE INSTALADOS.

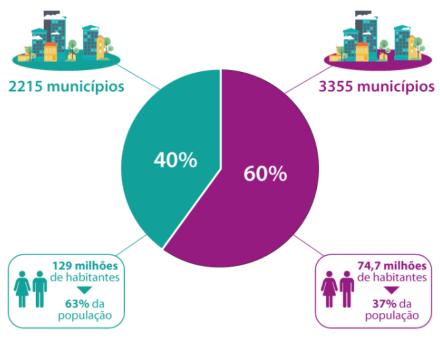


LIXÃO x ATERRO SANITÁRIO

De acordo com a norma NBR8419 (ABNT – 1996), Aterro Sanitário de Resíduos Sólidos Urbanos (RSU) é uma técnica de disposição de RSU sobre o solo, <u>sem causar danos ou riscos à saúde pública</u> e à segurança, minimizando os impactos ambientais.



SITUAÇÃO DOS MUNICÍPIOS BRASILEIROS

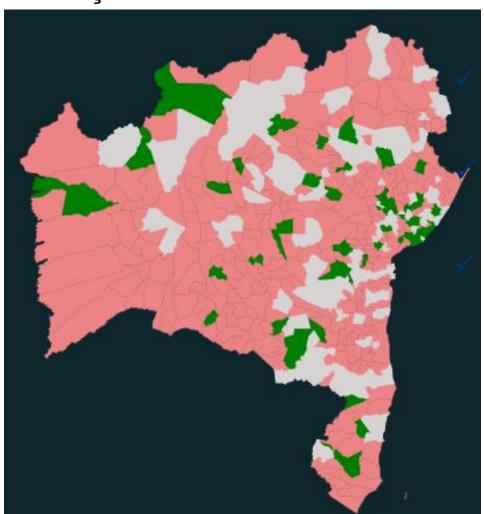


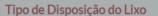
- Não Informado (1104)
- Aterro Sanitário (2064)
- Lixão / Aterro controlado (2402)

MUNICÍPIOS QUE DISPÕEM SEUS RESÍDUOS EM ATERROS SANITÁRIOS

Levantamento MMA 2015

■ ATERRO SANITÁRIO


■ LIXÃO E ATERRO CONTROLADO


SITUAÇÃO DOS MUNICÍPIOS BAIANOS

85% dos municípios tem descarte de lixo irregular;

68% das cidades tem LIXÕES;

A Bahia só tem menos LIXÕES que os estados de Goiás e Tocantins

- Não Informado (84)
- Aterro Sanitário (47)
- Lixão / Aterro controlado (286)

Fonte: CNM 2016

ATERRO SANITÁRIO

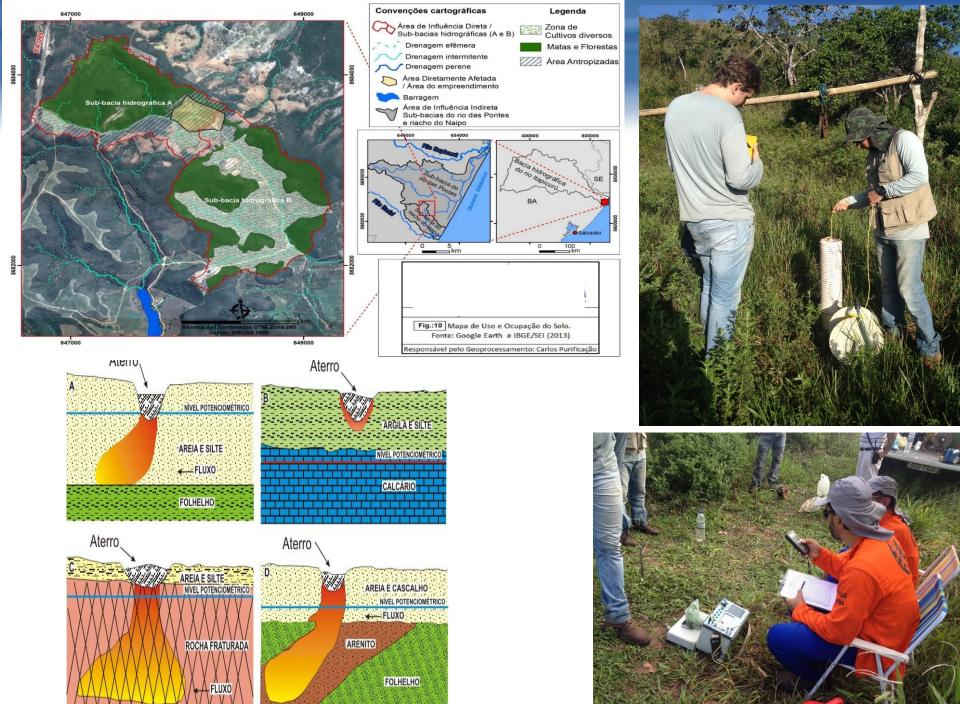
- 1. ATERRO SANITÁRIO É UM EQUIPAMENTO DE SANEAMENTO BÁSICO ESSENCIAL PARA O GERENCIAMENTO DOS RESÍDUOS SÓLIDOS. DEVE FAZER PARTE DO PLANO DE GESTÃO DE RS MUNICIPAL;
- 2. É O EQUIPAMENTO DE DESTINAÇÃO E DISPOSIÇÃO FINAL MAIS BARATO;
- 3. É A SOLUÇÃO DE DESTINAÇÃO FINAL QUE NÃO TEM SEQUÊNCIA NO TRATAMENTO DOS RESÍDUOS;
- 4. É O TIPO DE TRATAMENTO DE RESÍDUOS SÓLIDOS URBANOS MAIS UTILIZADO NO MUNDO;
- 5. ESTÁ EM CONSTANTE EVOLUÇÃO TECNOLÓGICA COM A IMPLANTAÇÃO DE NOVOS TIPOS DE MANTAS DE PROTEÇÃO DO SOLO, TRATAMENTO DO CHORUME E CONSEQUENTE PROTEÇÃO AO MEIO AMBIENTE;
- 6. É UMA OBRA DE ENGENHARIA PLANEJADA E PROJETADA COM OBJETIVO ESPECÍFICO DE PROTEÇÃO AO MEIO AMBIENTE E ELIMINAÇÃO DE PASSAIVOS AMBIENTAIS, COMO OS LIXÕES;
- 7. MODERNAMENTE TEM SIDO USADO COMO FONTE DE

INSTRUMENTOS NORMATIVOS E TÉCNICOS PARA PROJETOS, IMPLANTAÇÃO, OPERAÇÃO E MONITORAMENTO DE ATERROS

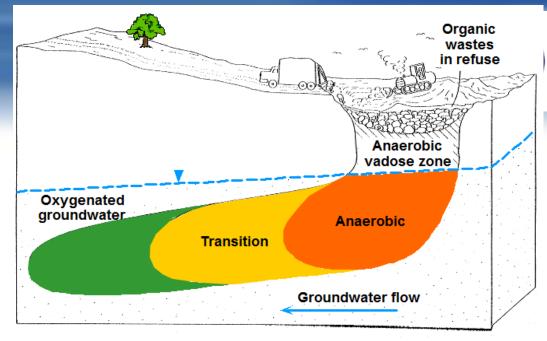
Instrumento Normativo	Diretriz	Orientações
Lei Federal 11.445/2007	Política Nacional de Saneamento Básico	Fixa as diretrizes nacionais para o saneamento básico.
Lei Federal 12.305/2010	Política Nacional de Resíduos Sólidos	Estabelece princípios, objetivos, instrumentos e diretrizes para a gestão e gerenciamento dos resíduos sólidos e outras providências.
ABNT NBR 10.004/1987	Classificação dos resíduos sólidos	Classifica os resíduos os sólidos quanto aos seus riscos potenciais ao meio ambiente e à saúde pública.
ABNT/NBR 15849:2010	Apresentação de projetos de Aterros de pequeno porte para a disposição de resíduos sólidos urbanos	Fixa normas e condições mínimas para apresentação de projetos e instalação de aterros de resíduos sólidos urbanos em municípios de até 20 mil habitantes.
ABNT NBR- 8419/1992	Apresentação de projetos de Aterros Sanitários de resíduos sólidos urbanos	Fixa as condições mínimas exigíveis para a apresentação de projetos de aterros sanitários de resíduos sólidos urbanos.
ABNT NBR 13896/1997	Aterros de resíduos não perigosos - Critérios para projeto, implantação e operação	Estabelece as condições mínimas exigíveis para projeto, implantação e operação de aterros de resíduos não perigosos.
ABNT/NBR 15113:2004	Resíduos sólidos da construção civil e resíduos inertes.	Estabelece normas e diretrizes para projeto implantação e operação de aterros de RCC e inertes.

INVESTIGAÇÃO GEOAMBIENTAL EM ÁREAS CONTAMINADAS POR LIXÕES

ABNT/NBR 15515/1,2,3 - ESTABELECE OS PROCEDIMENTOS PARA A AVALIAÇÃO DE PASSIVO AMBIENTAL EM SOLO E ÁGUAS SUBTERRÂNEAS.


 O CHORUME – é o <u>principal agente poluidor das águas</u> <u>superficiais e subterrâneas</u> em áreas de LIXÕES.

COMPOSIÇÃO DO CHORUME E OS RISCOS AMBIENTAIS


Variável	Faixa	Faixa mais	FOVP	
		Provável	(%)	
рН	5.7 - 8.6	7.2 - 8.6	78	
CaCO3(mg/L)	750 - 11400	750 - 7100	69	
Dureza (mg/L)	95 - 3100	95 - 2100	81	
Condutividade (uS/cm)	2950 - 25000	2950 - 17660	77	
DBO (mg/L)	<20 - 30000	<20 - 22300	75	
DQO (mg/L)	190 - 80000	19 - 22300	83	
Óleos e graxas (mg/L)	10 - 480	10 - 170	63	
Fenóis (mg/L)	0.9 - 9.9	0.9 - 4	58	
NTK (mg/L)	80 - 3100	Não há	-	
N-amoniacal (mg/L)	0.4 - 3000	0.4 - 1800	72	
N-orgânico (mg/L)	5 - 1200	400 - 1200	80	
N-nitrito (mg/L)	0 - 50	0 - 15	69	
N-nitrato (mg/L)	0 - 50	0 - 15	69	
P Total (mg/L)	0.1 - 40	1.1 - 15	53	
Sulfeto (mg/L)	0 - 35	0 - 10	78	
Cloreto (mg/L)	500 - 5200	500 - 3000	72	
STD (mg/L)	3200 - 21900	3200 - 14400	79	
Ferro (mg/L)	0.001 - 260	0.01 - 65	67	
Manganês (mg/L)	0.04 - 2.6	0.04 - 2	79	
Cobre (mg/L)	0.005 - 0.6	0.05 - 0.015	61	
Níquel (mg/L)	0.03 - 1.1	0.03 - 0.5	71	
Cromo (mg/L)	0.003 - 0.8	0.003 - 0.5	89	
Cádmio (mg/L)	0 - 0.26	0 - 0.065	67	
Chumbo (mg/L)	0.01 - 2.8	0.01 - 0.5	64	
Zinco (mg/L)	0.01 - 8	0.01 - 1.5	70	
FOVP (%): Frequência de ocorrência dos valores mais prováveis.				
Fonte: Souto e Povinelli (20	07).			

Parâmetros / Anos	0 a 5	5 a 10	10 a 15	> 20
DBO (mg/L)	10000 - 25000	1000 - 4000	50 - 1000	< 50
DQO (mg/L)	15000 - 40000	10000 - 20000	1000 - 5000	< 1000
NTK (mg/L)	1000 - 3000	400 - 600	75 - 300	< 50
N - NH3	500 - 1500	300 - 500	50 - 200	< 30
STD (mg/L)	10000 - 25000	5000 - 10000	2000 - 5000	< 1000
рН	3 - 6	6 -7	7 - 75	7.5
Cálcio (mg/L)	2000 - 4000	500 - 2000	300 - 500	< 300
Sódio e Potássio (mg/L)	2000 - 4000	500 - 1500	100 - 500	< 300
Ferro e Magnésio (mg/L)	500 - 1500	500 - 1000	100 - 500	< 300
Zinco (mg/L)	100 - 200	50 - 100	1 - 50	< 10
Cloreto (mg/L)	1000 - 2000	200 - 1000	50 - 200	< 50
Sulfato (mg/L)	500 - 2000	200 - 1000	50 - 200	< 50
Fósforo (mg/L)	100 - 300	10 - 100	-	< 10

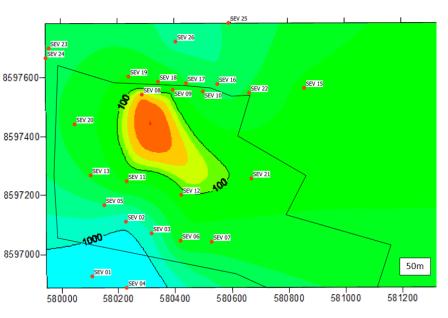
Composição química esperada para os líquidos lixiviado do aterro segundo a idade dos resíduos acondicionados. Fonte: PROSAB, 2009.

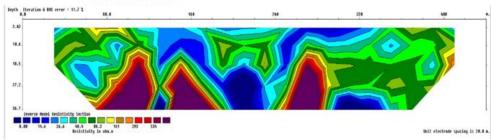
DEGRADAÇÃO DA MATÉRIA ORGÂNICA NOS LIXÕES E ATERROS SANITÁRIO E PLUMAS DE CONTAMINAÇÃO EM ÁGUAS SUBTERRÂNEAS

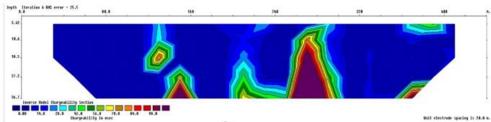
Fase [1]	Processo biogeoquímico [2]	Duração [2]
I Aeróbia	Hidrólise e degradação (ambiente aeróbio)	Horas a dias
II Transição	Hidrólise e fermentação (ambiente anaeróbio)	Dias a semanas
III Acidogênese	Acetogênese (ambiente anaeróbio)	6 a 18 meses
IV Metanogênese	Metanogênese (ambiente anaeróbio)	Anos a décadas
V Maturação	Oxidação	

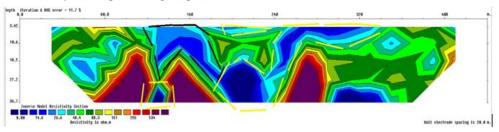
[1] Pohland e Harper (1985); [2] Fanin e Roberts (2006).

Processos redox	Reações
Metanogênese/ Mineralização fermentativa da mat. org.	$2CH_2O \rightarrow CH_3COOH \rightarrow CH_4 + CO_2$
Redução do sulfato/ OMO	$2CH_2O+SO_4^{2-}+H^+\rightarrow 2CO_2+HS^-+2H_2O$
Redução do ferro/ OMO	$CH_2O+4Fe(OH)_3+8H^+ \rightarrow CO_2+4Fe^{2+}+11H_2O$
Redução do manganês/ OMO	$CH_2O+2MnO_2+4H^+ \rightarrow CO_2+2Mn^{2+}+3H_2O$
Denitrificação/ OMO	$5CH_2O+4NO_3+4H^+ \rightarrow CO_2+2N_2+7H_2O$
Respiração aeróbia	$CH_2O+O_2 \rightarrow CO_2+H_2O$
Redução do CO2	HCO_3 -+ H^+ + $4H_2$ $\rightarrow CH_4$ + $3H_2O$
Oxidação do amônio	$NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O$
Oxidação do metano	$CH_4+2O_2 \rightarrow HCO_3^- + H^+ + H_2O$


Fonte: Christensen et al. (2001)




MAPEAMENTO DE PLUMAS DE CONTAMINAÇÃO


Seção de eletroresistividade

Seção de Polarização Induzida

Interpretação geofísica / geológica

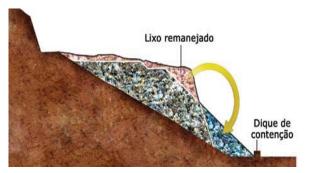
PLANO DE RECUPERAÇÃO DE ÁREA DEGRADADA - PRAD deve desenvolvido com base no que dispões a ABNT/NBR 13.030/1999 e Instrução Normativa IBAMA nº 04/2011.

- Identificação do PRAD
- · Caracterização da área do empreendimento
- Identificação do interessado
- Identificação do responsável técnico pela elaboração do PRAD
- Identificação do responsável técnico pela execução do PRAD
- · Origem da degradação
- Caracterização regional e local
- Caracterização da área a ser recuperada
- Objetivo geral e objetivos específicos
- Da implantação e manutenção
- Do monitoramento da recuperação
- Cronograma físico
- · Referências / bibliografia

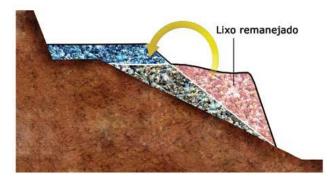
O que é uma remediação ambiental?

- Remediação Ambiental é um conjunto de técnicas e operações com objetivo de anular os efeitos nocivos, seja ao ser humano, seja ao restante da biota, de elementos tóxicos num determinado local.
- É o termo usado para corrigir problemas em áreas contaminadas.

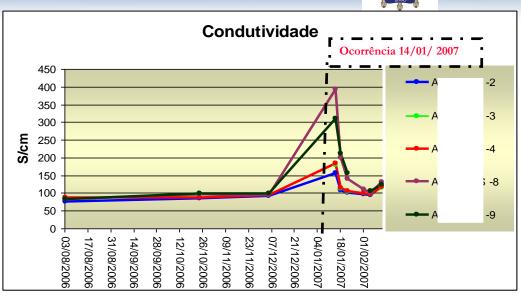
TÉCNICAS DE REMEDIAÇÃO

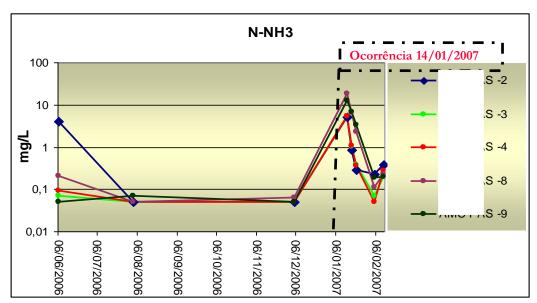

Recuperação Simples

Encapsulamento dos resíduos dispostos no LIXÃO. Em geral de dificil aplicação devido ao volume de resíduos



A situação do lixão não se enquadrar na recuperação simples devido às restrições observadas durante os estudos prévios de avaliação da área, que incluem a avaliação da água subterrânea quanto à contaminação.





Estudo de caso 1

DERRAMAMENTO DE CHORUME EM RIACHO APÓS FORTES CHUVAS

COBERTURA VEGETAL

Estudo de caso 2

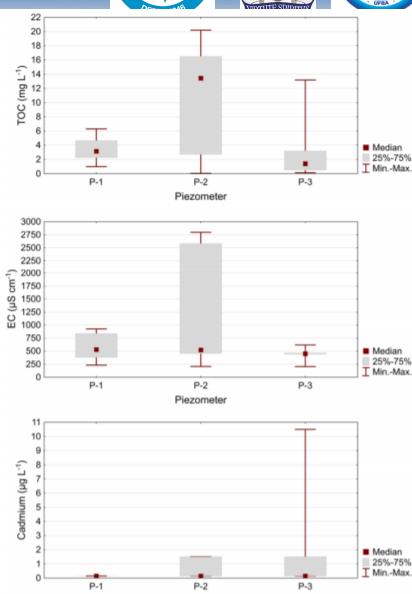
RECUPERAÇÃO AMBIENTAL DE LIXÃO INTEGRADO COM IMPLANTAÇÃO DE ATERRO SANITÁRIO

CAMADA DE SOLO VEGETAL SOLO ARGILOSO COMPACTAL

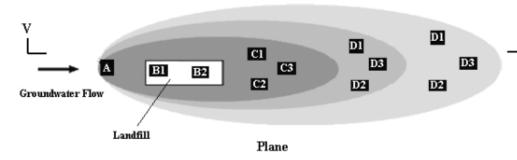
Resíduos Sólidos Urbanos (do antigo Lixão)

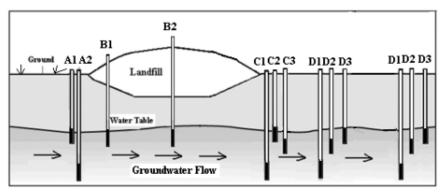
Solo Natural

Estudo de caso 3


ATERRO WARSAW POLÔNIA

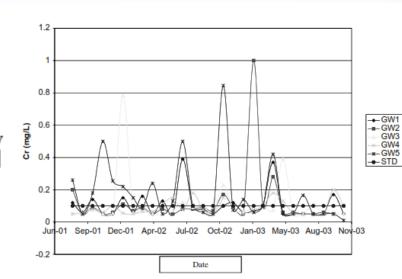
Piezometer

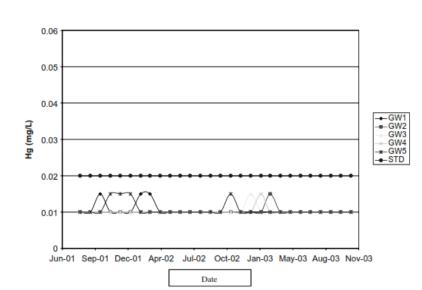




Estudo de caso 4

ATERRO PULAU BURUNG - MALÁSIA





Section V-V

- A Upper Gradient well / Borehole
- B Site well/Borehole
- C Near Site Monitoring Well/Borehole
- D Far From Site Controll Well/Borehole

Fonte: Zarhari, 2016

Atender aos requisitos da ABNT/NBR 13.896 de junho de 1997 - Aterros de Resíduos Não Perigosos - Critérios para projeto, implantação e operação.

- Topografia: declividade maior que 1% e inferior a 30%;
- Geologia e Solos: Substrato de baixa permeabilidade com solos argilosos.
 Distância mínima de 1,5 metros do nível freático do aquífero e a base das células de resíduos;
- Recursos hídricos: Distanciamento mínimo de 200m entre as célula de resíduos e qualquer recurso hídrico superficial;
- Vegetação: Ocorrência ou implantação de cirturão arbóreo para isolamento diminuindo odores e impacto visual do empreendimento;
- Acessos: Presença de acessos permanentes, pavimentados, uma vez que serão utilizados durante longos períodos para o transporte de resíduos por veículos pesados;
- Vida útil: Não inferior a 20 anos;
- Custos: Elaboração de um cronograma físico-financeiro de implantação e operação e análise de sustentabilidade econômica;
- **Distância mínima a núcleos populacionais**: Distância mínima de 500m entre a área útil e os núcleos habitacionais.

Obrigado pela atenção de tod@s!

Prof. Dr. Luiz Rogério Bastos leal Universidade Federal da Bahia Irogerio@ufba.br